34 REALTEK

Realtek Wi-Fi Direct/Miracast
Programming Guide

Support Linux Kernel <= 2.6.34

Date: 2013/01/29
Version: 1.2

This document is subject to change without notice. The document
contains Realtek confidential information and must not be disclosed
to any third party without appropriate NDA.

Document Version

Note

V1.2

1. Refine the P2P description
2. Added P2P commands
3. Added Miracast commands

Wi-Fi Direct (P2P) is the new technology developed by Wi-Fi Alliance. It is a
solution for Wi-Fi device-to-device connectivity. And it is also backward compatible
with existing Wi-Fi Certified devices.

The following picture is the overview for Wi-Fi Direct architecture of Realtek
Linux Wi-Fi Direct software. This software architecture is based on the linux standard
interface “wireless extension”. If the system platform will perform the P2P/Miracast
feature on cfg80211/Android, please refer to another document (Miracast on
Android.pdf).

User Interface

App
Normal
scanning/P2P
v Client mode: scanning
v Y
WPS/WPA
Functionalityf R
hostapd_cli i
Soft AP stapd_ aiid normal wpa_cli iwlist
Functionality scanning, P2P mode
Device onfoff
Discovery switching
scanning Y
User = -
Space iwpriv
P hostapd wpa_supplicant
I0CTL
Kernel
Space WiFi driver |Je——L

A

4«—— |nterface / Bus

h 4

WiFi NIC

Figurel: Software Architecture for Realtek Linux Wi-Fi Direct

Basically, there are two roles in the Miracast connection. One is Miracast source
device; another is Miracast display (sink) device. The TDLS & Wi-Fi Direct can be
used to establish the Miracast connection. The Wi-Fi Direct is mandatory feature for
Miracast, TDLS is optional. This document will focus on the Wi-Fi Direct technology
when creating the Miracast connection.

“User Interface App (Ul)” is an application which should be designed by customer for
their product. Ul should use the iwpriv application to get/set whole the P2P

information from/to the Realtek Wi-Fi driver. lwpriv application is available in the
wpa_supplicant_hostapd folder and we also provide the porting guide under document
folder. (Please refer to the Wireless tools porting guide.doc)

Of course, the Ul can use the iwpriv application to issue the P2P information to driver
based on the Wi-Fi Direct APIs described in this document.

wpa_cli and wpa_supplicant are the standard application to handle whole the
802.11 station mode connection. Hostapd and hostapd_cli are also the standard
application to handle whole the 802.11 AP mode connections.

In usual, there are 4 stages in the Wi-Fi Direct scenario.
1. “Device Discovery”

2. “Provision Discovery”

3. “Group Formation”

4. “Provisioning”

The following picture will provide the overall concept for Wi-Fi Direct
functionality and it will also contain these 4 stages described above.

P2P Device1 P2P Device2

Enable P2P e @ Enable P2P
Scanning P2P device i > | Monitoring P2P State
P2P Scanning and Searching
I <
Found P2P Device swjip-
Provisioin DiSCovery - ke
Provision Discovery

Got Provision Info sy <

Start Group Negotiation seji- >
Group Formation

Be decided the role s> <

Proceed the WPS welip- >

WPS

Got Credential —_
Start 802,11 connection =i | >

Form the 802.11 Networking

<

v v

Figure2: Wi-Fi Direct Overview

The figure2 describes the basic Wi-Fi Direct scenario and this document will use
this figure to explanation the Wi-Fi Direct functionality and APIs.

1. Enable P2P

In this case, there are two Wi-Fi devices which both support the Wi-Fi Direct
functionality. We can use the iwpriv to enable the Wi-Fi Direct function of Realtek
Wi-Fi driver (enable P2P).

#> iwpriv wlan0 p2p_set enable=n

“wlan0” is the network interface for Realtek Wi-Fi device on the system.
“p2p_set” command is used to pass the settings information to the driver. “enable” is
the actual command to tell the driver which information the application is trying to set.
“n” is a number to set the P2P functionality.

“n=0" means to disable the P2P functionality
Ex: #> iwpriv wlan0 p2p_set enable=0

“n=1" means to turn the P2P functionality on and the Wi-Fi driver will be the
P2P device mode.
Ex: #> iwpriv wlan0 p2p_set enable=1

“n=2" means to turn the P2P functionality on and the Wi-Fi driver will be the
P2P client mode
Ex: #> iwpriv wlan0 p2p_set enable=2

“n=3" means to turn the P2P functionality on and the Wi-Fi driver will be the
P2P group owner mode.
Ex: #> iwpriv wlan0 p2p_set enable=3

“n” had been defined in the P2P.h file of the document folder. This document
also copies that definition here for the reference.

enum P2P_ROLE {
P2P_ROLE_DISABLE =0,
P2P_ROLE_DEVICE =1,
P2P_ROLE_CLIENT =2,
P2P_ROLE_GO =3

The Realtek Wi-Fi driver supports the concurrent mode. It means there are two
network interfaces on your system when the Wi-Fi driver is installed on your platform.
However, the P2P functionality can just be enabled on one network interface. The P2P
functionality can’t be enabled on both two network interface at the same time. For
example: If you had enabled the P2P functionality on wlan0, the Wi-Fi driver will
ignore the P2P enable instruction automatically when you try to enable the P2P
functionality on wlanl,

2. Scanning P2P Device

After enabling the P2P functionality of the Wi-Fi driver, the P2P devicel got to
find out how many other P2P devices exist in the environment. The Ul can do the
scan via wpa_supplicant or iwlist command.

For wpa_supplicant:

Ex: #> wpa_cli scan /I Ask wpa_supplicant to do the scanning
Ex: #> wpa_cli scan_results // Get the scanning result

For iwlist:
Ex: #> iwlist wlan0 scan// Issue the scanning request to driver and result the
scanning result.

When P2P is enabled, the Wi-Fi driver can provide the different scanning result
based on the “scan_type” command.

Ex: #> iwpriv wlan0 p2p_set scan_type=n

When n=0, the Wi-Fi driver will provide the device list which has the P2P
capability. When n=1, the Wi-Fi driver will list all the Access Points and P2P devices
(This case is related to the WiDi Gen2 NB). When n=2, the Wi-Fi driver will provide
the Miracast source device list if the Wi-Fi driver is set to Miracast sink device. When
n=2, the Wi-Fi driver will provide the Miracast sink device list if the Wi-Fi driver is
set to the Miracast source device. The command “wfd_type” can be used to set the
Wi-Fi driver to Miracast source/sink device. When n=2

Ex: #> iwpriv wlan0 p2p_set wfd_type=n
When n=0, the Wi-Fi driver will play the Miracast source device. When n=1, the
Wi-Fi driver will play the Miracast sink device.

After having the scanning list, Realtek Wi-Fi driver provides the following
commands to get more detail information for each found device. (the following
command will just work fine when the MAC exists in the scanning result)

The wps_CM command will provide the WPS config method which the P2P
device with the MAC address supports. The MAC format is XX:XX: XX: XX XX: X X.
The MAC address is the mac address shows up in the scanning result generated by
iwlist or wpa_supplicant.

For example: 00:01:22:33:44:55
#> iwpriv wlan0 p2p_get2 wps_CM=MAC

The devN command will provide the readable device name of specific P2P
device.
#> iwpriv wlan0 p2p_get2 devN=MAC

The dev_type command will provide the WPS primary device type of specific
P2P devic.

#> iwpriv wlan0 p2p_get2 dev_type=MAC

The following information is the meaning returned by dev_type command.

N=00 -> device doesn’t exist in the scanning list
N=01 -> Computer

N=02 -> Input Device

N=03 -> Printers, Scanners, Faxes, Copiers
N=04 -> Camera

N=05 -> Storage

N=06 -> Network Infrastructure

N=07 -> Displays

N=08 -> Multimedia Devices

N=09 -> Gaming Devices

N=10 -> Telephone

N=11 -> Audio Device

The go_devadd command will provide the P2P device address for specific P2P
GO. (The SSID for P2P device is “DIRECT-*, the length of SSID is 7. The prefix of
SSID for P2P GO is “DIRECT-*, the length of P2P GO’s SSID is bigger than 8.)

#> iwpriv wlan0 p2p_get2 go_devadd=MAC

The InvProc command will provide the information which the specific P2P
device/P2P GO supports the P2P Invitation Procedure or not.

#> iwpriv wlan0 p2p_get2 InvProc=MAC

However, the InvProc will be 1 on some Android smart phones even they doesn’t
support the P2P persistent function.

3. Provision Discovery
The purpose for the provision discovery is to get the WPS Pin Code or WPS
push button for the following WPS procedure.

“prov_disc” is the command to start the provision procedure.
“00:11:22:33:44:55” is the P2P device address of peer P2P device (P2P Device2 in the
figure2) which you want to get the WPS information. “_” is a connector. “display”
means the peer P2P device should display its PIN CODE on its screen and the user
should key-in this PIN CODE on the local P2P device (P2P Devicel in the figurel).

“keypad” means the local P2P device should display its PIN CODE on its screen and
the user should key-in this PIN CODE on the peer P2P device. “pbc” means these two
P2P device will use the WPS push button for the following WPS procedure. “label”
means the user should read the PIN CODE from the label of peer P2P device and
key-in this PIN CODE of this label on the local P2P device. And now, both local P2P
device and peer P2P device had got the PIN CODE or PBC and should be ready to
form an 802.11 network.

Ex: #> iwpriv wlan0 p2p_set prov_disc=00:11:22:33:44:55_display

Ex: #> iwpriv wlan0 p2p_set prov_disc=00:11:22:33:44:55_keypad

Ex: #> iwpriv wlan0 p2p_set prov_disc=00:11:22:33:44:55_phc

Ex: #> iwpriv wlan0 p2p_set prov_disc=00:11:22:33:44:55_|abel

However, the peer P2P device is possible to be the P2P GO (The SSID can be
used to check whether this P2P device is P2P device or P2P GO). The MAC address
of wpa_supplicant & iwlist is the interface address of that P2P GO. In this case, the
Ul should use the “go_devadd” command to get the P2P GO’s device address then use
the “prov_disc” command with this P2P GO’s device address to send the provision
discovery request to P2P GO.

After getting the WPS PIN CODE or PBC, the Ul should use the “got_wpsinfo”
command to inform the Wi-Fi driver for this.

“got_wpsinfo=1" means the Ul got the WPS PIN CODE from peer P2P device’s
screen or label and uses key-in this PIN CODE on the local P2P device.

“got_wpsinfo=2" means the PIN CODE is displayed from the local P2P device
and user had key-in this PIN CODE on the peer P2P device.

“got_wpsinfo=3" means the Ul got the WPS PBC.

Ex: #> iwpriv wlan0 p2p_set got_wpsinfo=1

Ex: #> iwpriv wlan0 p2p_set got_wpsinfo=2

Ex: #> iwpriv wlan0 p2p_set got_wpsinfo=3

The P2P.h file also defined the value and meaning for the ‘“got wpsinfo”
command.

enum P2P_WPSINFO {
P2P_NO_WPSINFO =0,
P2P_GOT_WPSINFO_PEER_DISPLAY_PIN =1,
P2P_GOT_WPSINFO_SELF_DISPLAY_PIN =2,
P2P_GOT_WPSINFO_PBC =3,

On the P2P device2 side of figure2, it can use the “status” command to check the
current P2P state. If the status string is the “Status=08”, it means the driver received
the provision discovery request from certain P2P device. At this moment, the Ul
should use the “req_cm” command to know which WPS method the certain P2P
device is purpose to do.

Ex: #> iwpriv wlan0 p2p_get reg_cm
Return String: CM=dis or CM=lab or CM=pbc or CM=pad

If the return string is “CM=dis”, it means the peer P2P device want to this P2P
device to show up the PIN CODE on the local screen so that the user can key-in this
PIN CODE on the peer P2P device. If the return string is “CM=lab”, it means the peer
P2P device want to use the PIN CODE printed on the label of this P2P device and
user can key-in this PIN CODE on the peer P2P device. If the return string is
“CM=pbc”, it means the peer P2P device wants to use the PBC for the following WPS
procedure. If the return string is “CM=pad”, it means the peer P2P device will show
its PIN CODE on the peer P2P device side and the user should key-in this PIN CODE
on the local P2P device.

4. Start Group Negotiation

In the Wi-Fi Direct scenario, one of the P2P devices will become a group owner
(almost the same as the SoftAP) and the other P2P device will become an 802.11
client to connect to that group owner. The stage4 “Start Group Negotiation” is the
procedure to determine which P2P device should be the group owner/client.

“intent” is a value from 0 ~ 15. This value will provide the degree information to
want to be the group owner. “intent=15" means this Wi-Fi driver must be the group
owner. The default intent value is 1 and this default value will be assigned by enabling
the P2P functionality.

Ex: #> iwpriv wlan0 p2p_set intent=n

Beside the intent value, the Ul should determine the SSID which will be used
when this P2P device becomes the group owner with SoftAP functionality in the
future. After Ul determine the SSID, the Ul should pass that SSID to the driver by
using the ssid command. This information must be passed to driver before calling the
“nego” command.

Ex: #> iwpriv wlan0 p2p_set ssid=SsidString

“nego” command will inform the Wi-Fi driver to perform the group negotiation
procedure.
Ex: #> iwpriv wlan0 p2p_set nego=00:11:22:33:44:55

In the figure2, the P2P Device2 is using the “status” and “role” commands to
monitor the P2P state machine so that the Ul of P2P Device2 just is able to know what

kinds of information the P2P Devicel sent.

Ex: #> iwpriv wlan0 p2p_get status
Return string : Status=02 or Status=10

Ex: #> iwpriv wlan0 p2p_get role
Return string: Role=01

The following two enum are the definition for the “status” and “role” commands.

enum P2P_STATE {
P2P_STATE_NONE =0, // P2Pdisable

P2P_STATE_IDLE =1, /[P2P had enabled and do nothing
P2P_STATE_LISTEN = 2, 1 In pure listen state
P2P_STATE_SCAN = 3, I In scan phase
P2P_STATE_FIND_PHASE_LISTEN =4, 1 In the listen state of find phase
P2P_STATE_FIND_PHASE_SEARCH =5, 1 In the search state of find phase

P2P_STATE_TX_PROVISION_DIS REQ =6,// In P2P provisioning discovery
P2P_STATE_RX_PROVISION DIS RSP =7,

P2P_STATE_RX_PROVISION_DIS_REQ =8,

P2P_STATE_GONEGO_ING =9, // Doing the group owner negoitation handshake
P2P_STATE_GONEGO_OK =10, // finish the group negoitation handshake with success
P2P_STATE_GONEGO_FAIL=11,// finish the group negoitation handshake with failure
P2P_STATE_RECV_INVITE_REQ _MATCH =12, /[receiving the P2P Inviation request

and match with the profile.

P2P_STATE_PROVISIONING_ING =13, / Doing the P2P WPS
P2P_STATE_PROVISIONING_DONE =14, /I Finish the P2P WPS
P2P_STATE_TX_INVITE_REQ = 15, /[Transmit the P2P Invitation request

P2P_STATE_RX_INVITE_RESP_OK = 16, //Receiving the P2P Invitation response with sucess
P2P_STATE RECV_INVITE_REQ DISMATCH =17, /I receiving the P2P Inviation

request and dismatch with the profile.

P2P_STATE_RECV_INVITE_REQ_GO =18, //receiving the P2P Inviation request and this wifi
is GO.

P2P_STATE_RECV_INVITE_REQ JOIN = 19,//receiving the P2P Inviation request to join an
existing P2P Group.

P2P _STATE RX_INVITE_RESP_FAIL =20, // recveing the P2P Inviation response with
failure

P2P_STATE_RX_INFOR_NOREADY

21, /I receiving p2p negoitation response with
information is not available
P2P_STATE_TX_INFOR_NOREADY

22, /I sending p2p negoitation response with

information is not available

I3

enum P2P_ROLE {
P2P_ROLE_DISABLE =0,
P2P_ROLE_DEVICE =1,
P2P_ROLE_CLIENT =2,
P2P_ROLE_GO =3

For example, the Ul of P2P Device2 will get the “Status=08 when the P2P
Devicel proceeds the Provision Discovery procedure. “State=10" means the group
negotiation procedure is finished with success. “State=11" means the group
negotiation procedure is finished with failure.

After the P2P Devicel and P2P Device2 found the group negotiation finished,
they can use the “role” command to know the role they should play in the following
operation.

Ex: #> iwpriv wlan0 p2p_get role

Return string: Role=02

If the return string is “Role=02", it means this P2P device should play the 802.11
client role in the following operation. The Ul should launch wpa_supplicant to
perform the WPS procedure with the peer P2P device.

If the return string is “Role=03”, it means this P2P device should be the 802.11
AP role in the following operation. The Ul should launch the hostapd to enable the
SoftAP functionality and enable the WPS procedure.

In some Uls design, the Ul will inform the user there is a connection request
from peer P2P device and need user’s confirmation to accept this request or not. In
this case, the Ul won’t use the “got_wpsinfo” command to inform the Wi-Fi driver it
already got the WPS config method until user accepts the connection request. It is
possible to get the status=22 in this case. It means the Wi-Fi driver receives the P2P
negotiation request sent from peer P2P device and the “got_wpsinfo” command
doesn’t be called to set the WPS config method. So, the Wi-Fi driver already sent the
P2P negotiation response to peer P2P device with “information is unavailable” error
status. When this case happens, the Ul should use the “peer deva” command. After
having the device address for peer P2P device, the Ul can start the P2P scanning
function continuously until the scanning result contains this device address and use
the “p2p_connect” command to connect back to peer P2P device.

5. Proceed the WPS

After confirming the role for both P2P Devicel and P2P Device2, the P2P device
which got the “Role=02" should launch the wpa_supplicant in the background and
use the wpa_cli with PIN CODE or PBC to perform the WPS procedure. (Please refer
to wpa_cli_with_wpa_supplicant_20100728.doc for further information.). However,
the P2P device address and P2P interface address won’t be the same for some
P2P/Miracast devices. After the Ul got the status=10, the Ul can use the “peer_ifa” to
get the interface address for peer P2P/Miracast device. This interface address can be
used for the following WPS procedure to improve the connection success rate.

#> iwpriv wlan0 p2p_get peer_ifa

In the same word, the P2P device which got the “Role=03" should launch the
hostapd in the background and use the hostapd_cli with PIN CODE or PBC to
perform the WPS procedure. (Please refer to Quick Start Guide for_SoftAP.doc for
further information.)

6. DHCP

The Wi-Fi Direct Specification required that the P2P device which becomes the
group owner should also provide the DHCP server application in their system. The
DHCP server should be launched and be ready to provide the IP address to the DHCP
client. The specification also required that the P2P device which becomes the P2P
client should launch the DHCP client application to acquire the IP address from the
P2P group owner after the wpa_supplicant established the 802.11 connection with AP
successfully.

7. Other P2P commands

1. “inv_peer_deva” command:

When the Wi-Fi driver receives the P2P Invitation request from a P2P GO and
this invitation request is asking to join the P2P GO’s group, the P2P state will be 109.
The Wi-Fi driver can use the “peer_ifa” command to get interface address of that P2P
GO. After having the P2P GO’s interface address, the Ul can do the scanning
continuously until the scanning result contains this interface address. Then, the
“inv_peer_deva” can be used to get the device address of that P2P GO. The Ul can
use the “prov_disc” to issue the provision discovery request with this device address
then do the WPS procedure with this P2P GO.

2. “op_ch” get command:

When the P2P state is 10, it means the P2P negotiation had finished successfully.
The “op_ch” command can be used to know the final operating channel whether the
local Wi-Fi device is P2P GO or P2P Client.

Ex: #> iwpriv wlan0 p2p_get op_ch

3. “peer_port” command:

“peer_port” is the Miracast command and is used to get the control port for
Miracast source device. If the local Wi-Fi driver is playing the P2P Client, the Ul can
use this command after the wpa state becomes “COMPLETED”. If the local Wi-Fi
driver is playing the P2P GO, the Ul can use this command after the P2P Client had
connected to it (by using the hostapd_cli all_sta command).

4. “wfd_sa” command:

“wfd_sa” command is used to know the peer Miracast device is available or not.
If the peer Miracast device is not available, the Wi-Fi driver can’t use the prov_disc
and p2p_connect command to send the P2P packets to peer device.

5. “profilefound” command:

This command is used to support the P2P persistent function. When the
P2P/Miracast connection is established and the Wi-Fi driver plays the P2P Client, the
Ul should store the current network setting to a profile. When the Ul enters the
re-initialization state, the Ul should use this “profilefound” command to set the profile
information to Wi-Fi driver. After that, it is possible to get the P2P state=12. The P2P
state=12 means the Wi-Fi driver received a P2P Invitation Request frame to perform a
P2P persistent group and the Wi-Fi driver can find a profile out to be a P2P Client to
rebuild the P2P connection. The P2P state=17 means the Wi-Fi driver received a P2P
Invitation Request to perform a P2P persistent group but this profile can’t be found in
the profile information. P2P state=18 means the Wi-Fi driver received a P2P
Invitation Request to perform a P2P persistent group and the Wi-Fi driver plays as the
P2P GO.

Ex: #> iwpriv wlan0 p2p_set profilefound=0 // for clear all the profile
information of Wi-Fi driver

Ex: #> iwpriv wlan0 p2p_set profilefound=1IMACYYSSID

MAC is the interface address of peer P2P GO in XX:XX: XX XX: XX: XX
format.

YY is the length of SSID.

SSID is the SSID string for the P2P persistent group.

6. “listen_ch” command:

This command can be used to set the P2P listen channel to Wi-Fi driver. The
listen channel value should be 1 or 6 or 11. The Wi-Fi driver will determine the listen
channel by itself in two cases.

Case 1: The input listen channel is not 1, 6, 11.

Case 2: The Wi-Fi driver supports the concurrent mode and another network
interface had connected to an AP which stands on channel 1 or 6 or 11.

7. “op_ch” set command:

This command can used to set the desired operating channel to Wi-Fi driver.
However, the final operating channel should be confirmed by using the “op_ch” get
command.

Ex: #> iwpriv wlan0 p2p_set op_ch=6

8. “invite” command:

This command is used to send the P2P Invitation Request to perform a P2P
persistent group.

Ex: #> iwpriv wlan0 p2p_set invite="MAC1 GOMAC GOSSID”

The MACL1 is the P2P device address for peer P2P device. The GOMAC is the
interface address for that persistent group. The GOSSID is the SSID for persistent
GO.

9. “persistent” command:

This command will enable/disable the P2P persistent function so that other P2P
devices will know this P2P device supports the persistent function or not.

Ex: #> iwpriv wlan0 p2p_set persistent=1

10. “sa” command:

This command is for Miracast functionality. It is used to let other Miracast
devices know the Wi-Fi is ready for Miracast connection or not.

Ex: iwpriv wlan0 p2p_set sa=1

11. “wfd_type” command:

This command is for Miracast functionality and can be used to set the Miracast
role.

/I Set the Miracast role to source device

Ex: #> iwpriv wlan0 p2p_set wfd_type=0
/I Set the Miracast role to display (sink) device
Ex: #> iwpriv wlan0 p2p_set wfd_type=1

12. “scan_type” command:

This command is used to control the scanning result list.

Ex: #> iwpriv wlan0 p2p_set scan_type=0; iwlist wlan0 scan

The scanning result will be the found P2P devices.

Ex: #> iwpriv wlan0 p2p_set scan_type=1; iwlist wlan0 scan

The scanning result will be found Access Points and P2P devices. This mode will
be compatible with the Intel WiDi Gen2.

Ex: #> iwpriv wlan0 p2p_set scan_type=2; iwlist wlanO scan

If the Wi-Fi driver is Miracast source device, the scanning result will be found
Miracast display device. If the Wi-Fi driver is Miracast display device, the scanning
result will be the found Miracast source device.

